Oblique Projection Matching Pursuit
نویسندگان
چکیده
Recent theory of compressed sensing (CS) tells us that sparse signals can be reconstructed from a small number of random samples. In reconstruction of sparse signals, greedy algorithms, such as the orthogonal matching pursuit (OMP), have been shown to be computationally efficient. In this paper, the performance of OMP is shown to be dependent on how well information of the underlying signals is preserved in the residual vector. Further, to improve the information preservation, we present a modification of OMP, called oblique projection matching pursuit (ObMP), which updates the residual in a oblique projection manor. Using the restricted isometric property (RIP), we build a solid yet very intuitive grasp of the more accurate phenomenon of ObMP. We also show from empirical experiments that the ObMP achieves improved reconstruction performance over the conventional OMP algorithm in Feng Wang [email protected] Jian Wang [email protected] Yunquan Dong [email protected] Byonghyo Shim [email protected] 1 Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea 2 School of Industrial Management Engineering, Korea University, Seoul, Korea 3 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China terms of support detection ratio and mean squared error (MSE).
منابع مشابه
Sparse Representations for Structured Noise Filtering
The role of sparse representations in the context of structured noise filtering is discussed. A strategy, especially conceived so as to address problems of an ill posed nature, is presented. The proposed approach revises and extends the Oblique Matching Pursuit technique. It is shown that, by working with an orthogonal projection of the signal to be filtered, it is possible to apply orthogonal ...
متن کاملA Matching Pursuit Generalized Approximate Message Passing Algorithm
This paper proposes a novel matching pursuit generalized approximate message passing (MPGAMP) algorithm which explores the support of sparse representation coefficients step by step, and estimates the mean and variance of non-zero elements at each step based on a generalized-approximate-message-passing-like scheme. In contrast to the classic message passing based algorithms and matching pursuit...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملMatching Pursuit through Genetic Algorithms
Matching Pursuit is a greedy algorithm that decomposes any signal into a linear expansion of waveforms taken from a redundant dictionary. Computing the projection of the signal on every element of the basis has a high computational cost. To reduce this computational cost, optimized computational error minimization methods have to be found. Genetic Algorithms have shown to be a good tool to this...
متن کاملOptimized Projection Matrix for Compressive Sensing
Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- MONET
دوره 22 شماره
صفحات -
تاریخ انتشار 2017